lunes, 1 de marzo de 2010

BIODIGESTORES




Que es el biodigestor y como funciona? Es una planta mediante la cual, a partir de la materia organica (principalmente estiércol), se obtiene biogas y bioabono. El biodigestor tiene como fundamento, la fermentación de la materia organica por la acción de bacterias en un medio carente de oxígeno (anaerobio).

Clases de Biodigestores

En general se definen de dos tipos según la forma de llenado:

1. DE FLUJO DISCONTINUO: Son llamados también de bache. Son llenados una vez y vaciados después que se termina la producción de gas. Se utilizan para experimentos o cuando no se dispone de una cantidad constante de materia orgánica.

2. DE FLUJO CONTINUO: Se requiere una carga y descarga constante.

2.1.. DE ESTRUCTURA SOLIDA: Utilizan para la construcción de la cámara de digestión y de almacenamiento, materiales rígidos como bloques de ladrillo y cemento.

2.1.1 De estructura sólida fija: Tiene una sola cámara de digestión y almacenamiento de gas. Soporta altas presiones.

2.1.2 De estructura sólida móvil. O llamados de campana, la cual flota y permite mantener una presión constante del gas. Estos dos últimos tipos de construcción son costosos y requieren mano de obra calificada. Los de campana necesitan un buen mantenimiento que evite su corrosión.

2.2. DE ESTRUCTURA FLEXIBLE: En términos generales consisten de una cámara de digestión cilíndrica horizontal de algún material flexible, impermeable a gases y líquidos. De este tipo es el que esta montado en las fincas.

El Biodigestor Plástico de Flujo Continuo.

Por su bajo costo, su facilidad de construcción y montaje y la sencillez del manejo, este es el tipo de biodoigestor que mejor se acomoda a las condiciones de las fincas de nuestro medio rural.

El Biodigestor como Descontaminador.

Lo más importante de recalcar es el efecto descontaminante que realiza el biodigestor a las excretas luego del proceso de fermentación, en términos generales comparando el influyente con el efluente se tienen reducciones de contaminación cercana al 80%.

Como se Alimenta un Biodigestor:

Aunque cualquier tipo de materia orgánica se puede utilizar, se recomiendan los estiércoles de los diferentes animales de granja e inclusive las heces fecales de los humanos por su eficiencia. los animales mono gástricos son los más metanogénicos. en general se considera que el porcentaje de materia seca de las excretas sólidas esta al rededor del 20% y debe ingresar al biodigestor en una mezcla de 5 partes de agua por una de estiércol.

BIOCOMBUSTIBLES


Los biocombustibles pueden reemplazar parcialmente a los combustibles fósiles. En comparación con otras energías alternativas, como la proporcionada por el hidrógeno, el reemplazo de los combustibles fósiles por biocombustibles en el sector de transporte carretero puede ser realizado con menores costos, debido a que no requieren grandes cambios en la tecnología actualmente utilizada, ni tampoco en el sistema de distribución. Utilizar otro tipo de energía, como la obtenida a través del hidrógeno, que se basa en una tecnología totalmente distinta, requeriría grandes cambios en el stock de capital. Esto no implica que se deban descartar nuevas fuentes de energía, sino que los biocombustibles serán los que tendrán más crecimiento en el corto plazo.

Clases de biocombustibles

Las fuentes de bioenergía pueden ser biomasa tradicional quemada directamente, tecnologías a base de biomasa para generar electricidad, y biocombustibles líquidos para el sector de transporte.
- La biomasa tradicional es utilizada en países subdesarrollados, principalmente en zonas rurales. Esta energía es neutra en emisiones de CO2 (utiliza fotosíntesis reciente), pero tiene elevados costos ambientales, sanitarios y económicos.
- Con respecto a la biomasa para generar electricidad, este sistema es utilizado en países industrializados con elevados recursos forestales, que utilizan madera para generar electricidad.
- Los biocombustibles líquidos proporcionan actualmente aproximadamente la energía equivalente a 20 millones de toneladas de petróleo (lo que equivale al 1% del combustible utilizado mundialmente para transporte por carretera) [Comité de Seguridad Alimentaria Mundial 2007].
Los biocombustibles que mas se utilizan son el etanol y el biodiesel. El etanol puede ser utilizado en motores que utilizan nafta, mientras que el biodiesel puede ser utilizado en motores que utilizan gasoil.
El etanol es un biocombustible a base de alcohol, el cual se obtiene directamente del azúcar. Ciertos cultivos permiten la extracción directa de azúcar, como la caña azucarera (Brasil), la remolacha (Chile) o el maíz (Estados Unidos). Sin embargo, prácticamente cualquier residuo vegetal puede ser transformado en azúcar, lo que implica que otros cultivos también pueden ser utilizados para obtener alcohol. Aunque con la tecnología disponible actualmente este último proceso es muy costoso, se pronostica que ocurran avances en este sentido (las llamadas tecnologías de segunda generación).
En el caso de los motores diesel, se pueden utilizar biocombustibles obtenidos a partir de aceites o grasas. Ciertas plantas como la soja o el girasol, son las que mas eficientemente producen aceites que pueden ser utilizados como biocombustibles directamente, o pueden ser procesados para obtener un biocombustible mas refinado. La utilización directa de aceites vegetales es posible, pero requiere de modificaciones en el motor. El sistema más habitual es la transformación de los aceites mediante un proceso químico que permite la utilización del biocombustible en un motor diesel sin modificar.

Ventajas de los biocombustibles

a) No incrementan los niveles de CO2 en la atmósfera, con lo que se reduce el peligro del efecto invernadero.
b) Proporcionan una fuente de energía reciclable y, por lo tanto, inagotable.
c) Revitalizan las economías rurales, y generan empleo al favorecer la puesta en marcha de un nuevo sector en el ámbito agrícola.
d) Se podrían reducir los excedentes agrícolas que se han registrado en las últimas décadas.
e) Se mejora el aprovechamiento de tierras con poco valor agrícola y que, en ocasiones, se abandonan por la escasa rentabilidad de los cultivos tradicionales.
f) Se mejora la competitividad al no tener que importar fuentes de energía tradicionales.

Desventajas del uso e los biocombustibles

a) El costo de producción de los biocombustibles casi dobla al del de la gasolina o gasóleo (sin aplicar impuestos). Por ello, no son competitivos sin ayudas públicas.
b) Se necesitan grandes espacios de cultivo, dado que del total de la plantación sólo se consigue un 7% de combustible. En España, por ejemplo, habría que cultivar un tercio de todo el territorio para abastecer sólo la demanda interna de combustible.
c) Potenciación de monocultivos intensivos, con el consiguiente uso de pesticidas y herbicidas.
d) El combustible precisa de una transformación previa compleja. Además, en los bioalcoholes, la destilación provoca, respecto a la gasolina o al gasóleo, una mayor emisión en dióxido de carbono.
e) Su uso se limita a un tipo de motor de bajo rendimiento y poca potencia.
En resumen, no se encuentra un biocombustible líquido (bioetanol y biodiesel) que sea claramente más ventajoso que otro (la elección dependerá del fin al que se destine), ni siquiera por su costo, que varía en función de diversos factores: materias primas utilizadas, precio en el mercado de los subproductos y derivados producidos con el biocombustible, costo de la energía y tecnología utilizada en el proceso de transformación, así como el propio tamaño del vegetal. Aunque producir un bioetanol o biodiesel, resulta más costoso que generar gasolina y gasóleo, gracias a los decrecientes costos de las materias primas agrícolas y a las mejoras en la tecnología procesadora

domingo, 28 de febrero de 2010

ENERGIA TERMICA


Se denomina energía térmica a la energía liberada en forma de calor. Puede ser obtenida de la naturaleza, a partir de la energía térmica, mediante una reacción exotérmica, como la combustión de algún combustible; por una reacción nuclear de fisión o de fusión; mediante energía eléctrica por efecto Joule o por efecto termoeléctrico; o por rozamiento, como residuo de otros procesos mecánicos o químicos. Asimismo, es posible aprovechar energía de la naturaleza que se encuentra en forma de energía térmica, como la energía geotérmica o la energía solar fotovoltaica.

La energía térmica se puede transformar utilizando un motor térmico, ya sea en energía eléctrica, en una central termoeléctrica; o en trabajo mecánico, como en un motor de automóvil, avión o barco.

La obtención de energía térmica implica un impacto ambiental. La combustión libera dióxido de carbono (CO2) y emisiones contaminantes. La tecnología actual en energía nuclear da lugar a residuos radiactivos que deben ser controlados. Además deben tenerse en cuenta la utilización de terreno de las plantas generadoras de energía y los riesgos de contaminación por accidentes en el uso de los materiales implicados, como los derrames de petróleo o de productos petroquímicos derivados.
Fundamentos de la energía térmica
Podemos decir que la energía térmica se relaciona íntimamente con el calor, o mejor dicho con los fenómenos caloríficos, para comprender un poco mejor esta idea, decimos que este tipo de energía se produce cuando dos cuerpos, que tienen diferentes temperaturas, se ponen en contacto.
El cuerpo caliente es el que comunica la energía al cuerpo frío, la diferencia entre ambas temperaturas es lo que se denomina energía térmica; no es tarea fácil definir de manera precisa a la energía térmica debido a que ésta posee más de un enfoque. De acuerdo con la teoría cinético-molecular, ésta es la energía resultante de sumar las energías mecánicas de los movimientos de las diferentes partículas que lo constituyen. La energía térmica no puede medirse en términos absolutos, pero sí podemos determinar cuánto varía y esto se hace tomando como referencia al calor. ¿Qué queremos decir con esto?, sencillamente que la cantidad de energía térmica que gana o pierde un cuerpo que se encuentra en contacto con otro el cual posee una temperatura diferente recibe la denominación de calor, y justamente son las variaciones de calor lo que implican una variación de energía térmica. En conclusión señalamos que el calor es la medida de este tipo de energía.

Aplicaciones

La energía térmica posee un sinfín de aplicaciones pero se emplea principalmente para abastecer a los sistemas de calefacción y para proveer agua caliente a los sistemas sanitarios; los equipos domésticos de alta tecnología cuentan con un desarrollo fiable y económico, pueden funcionar a base de energía solar o de otras fuentes. En el primer caso no debemos depender únicamente de los días soleados ya que los equipos actuales cuentan con depósito y un sistema energético auxiliar en donde se almacena toda la energía recogida durante días lo que nos permite utilizarla luego durante la noche.

La cocina es otro de los lugares en donde se utiliza la energía térmica, siempre y cuando nos refiramos a las cocinas solares; en ellas se pueden cocinar la mayoría de los platos que haríamos con un horno convencional con la ventaja de que en una cocina solar obtenemos un plato de manera ecológica. El único inconveniente de estos dispositivos es que necesita de un período de tiempo mucho más extenso para que los alimentos alcancen las temperaturas de cocción. La energía térmica no se ha explotado convenientemente aún pero, de acuerdo a varios entendidos, este proceso no demorará mucho tiempo; son muchas las naciones que han presentado planes y proyectos para incursionar en este recurso aprovechando sus beneficios al máximo. Seguramente, en pocos años, encontraremos muchos más hornos y radiadores solares que hoy en día.

ENERGIA SOLAR


La energía solar es la energía obtenida mediante la captación de la luz y el calor emitidos por el Sol.

La radiación solar que alcanza la Tierra puede aprovecharse por medio del calor que produce a través de la absorción de la radiación, por ejemplo en dispositivos ópticos o de otro tipo. Es una de las llamadas energías renovables, particularmente del grupo no contaminante, conocido como energía limpia o energía verde. Si bien, al final de su vida útil, los paneles fotovoltaicos pueden suponer un residuo contaminante difícilmente reciclable al día de hoy.

La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es de aproximadamente 1000 W/m² en la superficie terrestre. A esta potencia se la conoce como irradiancia.

La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.

Tecnología y usos de la energía solar

Clasificación por tecnologías y su correspondiente uso más general:
•Energía solar pasiva: Aprovecha el calor del sol sin necesidad de mecanismos o sistemas mecánicos.
•Energía solar térmica: Para producir agua caliente de baja temperatura para uso sanitario y calefacción.
•Energía solar fotovoltaica: Para producir electricidad mediante placas de semiconductores que se alteran con la radiación solar.
•Energía solar termoeléctrica: Para producir electricidad con un ciclo termodinámico convencional a partir de un fluido calentado a alta temperatura (aceite térmico)
•Energía solar híbrida: Combina la energía solar con otra energía. Según la energía con la que se combine es una hibridación:
oRenovable: biomasa, energía eólica.3
oFósil.
•Energía eólico solar: Funciona con el aire calentado por el sol, que sube por una chimenea donde están los generadores.
Otros usos de la energía solar y ejemplos más prácticos de sus aplicaciones:
•Huerta solar
•Central térmica solar, como:
ola que está en funcionamiento desde el año 2007 en Sanlúcar la Mayor (Sevilla), de 11 MW de potencia que entregará un total de 24 GWh al año
oy la de Llanos de Calahorra, cerca de Guadix, de 50 MW de potencia. En proyecto Andasol I y II.
•Potabilización de agua
•Cocina solar
•Destilación.
•Evaporación.
•Fotosíntesis.
•Secado.
•Arquitectura sostenible.
•Cubierta Solar.
•Acondicionamiento y ahorro de energía en edificaciones.
oCalentamiento de agua.
oCalefacción doméstica.
oIluminación.
oRefrigeración.
oAire acondicionado.
oEnergía para pequeños electrodomésticos.

ENERGIA EOLICA


Energía eólica es la energía obtenida del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es transformada en otras formas útiles para las actividades humanas.

El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.

En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigavatios.1 Mientras la eólica genera alrededor del 1% del consumo de electricidad mundial,2 representa alrededor del 19% de la producción eléctrica en Dinamarca, 9% en España y Portugal, y un 6% en Alemania e Irlanda (Datos del 2007).

La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Sin embargo, el principal inconveniente es su intermitencia.

Cómo se produce y obtiene


La energía del viento está relacionada con el movimiento de las masas de aire que se desplazan de áreas de alta presión atmosférica hacia áreas adyacentes de baja presión, con velocidades proporcionales al gradiente de presión.
Los vientos son generados a causa del calentamiento no uniforme de la superficie terrestre por parte de la radiación solar, entre el 1 y 2% de la energía proveniente del sol se convierte en viento. De día, las masas de aire sobre los océanos, los mares y los lagos se mantienen frías con relación a las áreas vecinas situadas sobre las masas continentales.
Los continentes absorben una menor cantidad de luz solar, por lo tanto el aire que se encuentra sobre la tierra se expande, y se hace por lo tanto más liviana y se eleva. El aire más frío y más pesado que proviene de los mares, océanos y grandes lagos se pone en movimiento para ocupar el lugar dejado por el aire caliente.
Para poder aprovechar la energía eólica es importante conocer las variaciones diurnas y nocturnas y estacionales de los vientos, la variación de la velocidad del viento con la altura sobre el suelo, la entidad de las ráfagas en espacios de tiempo breves, y valores máximos ocurridos en series históricas de datos con una duración mínima de 20 años. Es también importante conocer la velocidad máxima del viento. Para poder utilizar la energía del viento, es necesario que este alcance una velocidad mínima que depende del aerogenerador que se vaya a utilizar pero que suele empezar entre los 3 m/s (10 km/h) y los 4 m/s (14,4 km/h), velocidad llamada "cut-in speed", y que no supere los 25 m/s (90 km/h), velocidad llamada "cut-out speed".
La energía del viento es utilizada mediante el uso de máquinas eólicas (o aeromotores) capaces de transformar la energía eólica en energía mecánica de rotación utilizable, ya sea para accionar directamente las máquinas operatrices, como para la producción de energía eléctrica. En este último caso, el sistema de conversión, (que comprende un generador eléctrico con sus sistemas de control y de conexión a la red) es conocido como aerogenerador.
En la actualidad se utiliza, sobre todo, para mover aerogeneradores. En estos la energía eólica mueve una hélice
Utilización de la energía eólica
La industria de la energía eólica en tiempos modernos comenzó en 1979 con la producción en serie de turbinas de viento por los fabricantes Kuriant, Vestas, Nordtank, y Bonus. Aquellas turbinas eran pequeñas para los estándares actuales, con capacidades de 20 a 30 Kw cada una. Desde entonces, la talla de las turbinas ha crecido enormemente, y la producción se ha expandido a muchos países


Ventajas de la energía eólica


Es un tipo de energía renovable ya que tiene su origen en procesos atmosféricos debidos a la energía que llega a la Tierra procedente del Sol.
Es una energía limpia ya que no produce emisiones atmosféricas ni residuos contaminantes.
No requiere una combustión que produzca dióxido de carbono (CO2), por lo que no contribuye al incremento del efecto invernadero ni al cambio climático.
Puede instalarse en espacios no aptos para otros fines, por ejemplo en zonas desérticas, próximas a la costa, en laderas áridas y muy empinadas para ser cultivables.
Puede convivir con otros usos del suelo, por ejemplo prados para uso ganadero o cultivos bajos como trigo, maíz, patatas, remolacha, etc.
Crea un elevado número de puestos de trabajo en las plantas de ensamblaje y las zonas de instalación.
Su instalación es rápida, entre 6 meses y un año.
Su inclusión en un sistema ínter ligado permite, cuando las condiciones del viento son adecuadas, ahorrar combustible en las centrales térmicas y/o agua en los embalses de las centrales hidroeléctricas.
Su utilización combinada con otros tipos de energía, habitualmente la solar, permite la auto alimentación de viviendas, terminando así con la necesidad de conectarse a redes de suministro, pudiendo lograrse autonomías superiores a las 82 horas, sin alimentación desde ninguno de los 2 sistemas.
La situación actual permite cubrir la demanda de energía en España un 30% debido a la múltiple situación de los parques eólicos sobre el territorio, compensando la baja producción de unos por falta de viento con la alta producción en las zonas de viento. Los sistemas del sistema eléctrico permiten estabilizar la forma de onda producida en la generación eléctrica solventando los problemas que presentaban los aerogeneradores como productores de energía al principio de su instalación.
Posibilidad de construir parques eólicos en el mar, donde el viento es más fuerte, más constante y el impacto social es menor, aunque aumentan los costes de instalación y mantenimiento. Los parques offshore son una realidad en los países del norte de Europa, donde la generación eólica empieza a ser un factor bastante importante.


Inconvenientes de la energía eólica


Aspectos técnicos
Debido a la falta de seguridad en la existencia de viento, la energía eólica no puede ser utilizada como única fuente de energía eléctrica. Por lo tanto, para salvar los "valles" en la producción de energía eólica es indispensable un respaldo de las energías convencionales (centrales de carbón o de ciclo combinado, por ejemplo, y más recientemente de carbón limpio). Sin embargo, cuando respaldan la eólica, las centrales de carbón no pueden funcionar a su rendimiento óptimo, que se sitúa cerca del 90% de su potencia. Tienen que quedarse muy por debajo de este porcentaje, para poder subir sustancialmente su producción en el momento en que afloje el viento. Por tanto, en el modo "respaldo", las centrales térmicas consumen más combustible por Kw/h producido. También, al subir y bajar su producción cada vez que cambia la velocidad del viento, se desgasta más la maquinaría. Este problema del respaldo en España se va a tratar de solucionar mediante una interconexión con Francia que permita emplear el sistema europeo como colchón de la variabilidad eólica.
la variabilidad en la producción de energía eólica tiene 2 importantes consecuencias:
Para evacuar la electricidad producida por cada parque eólico (que suelen estar situados además en parajes naturales apartados) es necesario construir unas líneas de alta tensión que sean capaces de conducir el máximo de electricidad que sea capaz de producir la instalación. Sin embargo, la media de tensión a conducir será mucho más baja. Esto significa poner cables 4 veces más gruesos, y a menudo torres más altas, para acomodar correctamente los picos de viento.
Es necesario suplir las bajadas de tensión eólicas "instantáneamente" (aumentando la producción de las centrales térmicas), pues sino se hace así se producirían, y de hecho se producen apagones generalizados por bajada de tensión. Este problema podría solucionarse mediante dispositivos de almacenamiento de energía eléctrica. Pero la energía eléctrica producida no es almacenable: es instantáneamente consumida o perdida.


Además, otros problemas son:

Técnicamente, uno de los mayores inconvenientes de los aerogeneradores es el llamado hueco de tensión. Ante uno de estos fenómenos, las protecciones de los aerogeneradores con motores de jaula de ardilla se desconectan de la red para evitar ser dañados y, por tanto, provocan nuevas perturbaciones en la red, en este caso, de falta de suministro. Este problema se soluciona bien mediante la modificación de la aparamenta eléctrica de los arogeneradores, lo que resulta bastante costoso, bien mediante la utilización de motores síncronos aunque es bastante más fácil asegurarse de que la red a la que se va a conectar sea fuerte y estable.
Uno de los grandes inconvenientes de este tipo de generación, es la dificultad intrínseca de prever la generación con antelación. Dado que los sistemas eléctricos son operados calculando la generación con un día de antelación en vista del consumo previsto, la aleatoriedad del viento plantea serios problemas. Los últimos avances en previsión del viento han mejorado muchísimo la situación, pero sigue siendo un problema. Igualmente, grupos de generación eólica no pueden utilizarse como nudo oscilante de un sistema.
Además de la evidente necesidad de una velocidad mínima en el viento para poder mover las aspas, existe también una limitación superior: una máquina puede estar generando al máximo de su potencia, pero si el viento aumenta lo justo para sobrepasar las especificaciones del aerogenerador, es obligatorio desconectar ese circuito de la red o cambiar la inclinación de las aspas para que dejen de girar, puesto que con viento de altas velocidades la estructura puede resultar dañada por los esfuerzos que aparecen en el eje. La consecuencia inmediata es un descenso evidente de la producción eléctrica, a pesar de haber viento en abundancia, y otro factor más de incertidumbre a la hora de contar con esta energía en la red eléctrica de consumo.
Aunque estos problemas parecen únicos a la energía eólica, son comunes a todas las energías de origen natural:

Un panel solar sólo producirá potencia mientras haya suficiente luz solar.
Una central hidráulica de represa sólo podrá producir mientras las condiciones hídricas y las precipitaciones permitan la liberación de agua.
Aspectos medioambientales
Molinos en La Mancha, España, famosos desde la publicación de la novela Don Quijote de la Mancha en 1605, son un patrimonio nacional. Generalmente se combina con centrales térmicas, lo que lleva a que existan quienes critican que realmente no se ahorren demasiadas emisiones de dióxido de carbono. No obstante, hay que tener en cuenta que ninguna forma de producción de energía tiene el potencial de cubrir toda la demanda y la producción energética basada en renovables es menos contaminante, por lo que su aportación a la red eléctrica es netamente positiva.
Existen parques eólicos en España en espacios protegidos como ZEPAs (Zona de Especial Protección de Aves) y LIC (Lugar de Importancia Comunitaria) de la Red Natura 2000, lo que es una contradicción. Si bien la posible inserción de alguno de estos parques eólicos en las zonas protegidas ZEPAS y LIC tienen un impacto reducido debido al aprovechamiento natural de los recursos, cuando la expansión humana invade estas zonas, alterándolas sin que con ello se produzca ningún bien.
Al comienzo de su instalación, los lugares seleccionados para ello coincidieron con las rutas de las aves migratorias, o zonas donde las aves aprovechan vientos de ladera, lo que hace que entren en conflicto los aerogeneradores con aves y murciélagos. Afortunadamente los niveles de mortandad son muy bajos en comparación con otras causas como por ejemplo los atropellos (ver gráfico). Aunque algunos expertos independientes aseguran que la mortandad es alta. Actualmente los estudios de impacto ambiental necesarios para el reconocimiento del plan del parque eólico tienen en consideración la situación ornitológica de la zona. Además, dado que los aerogeneradores actuales son de baja velocidad de rotación, el problema de choque con las aves se está reduciendo.
El impacto paisajístico es una nota importante debido a la disposición de los elementos horizontales que lo componen y la aparición de un elemento vertical como es el aerogenerador. Producen el llamado efecto discoteca: este efecto aparece cuando el sol está por detrás de los molinos y las sombras de las aspas se proyectan con regularidad sobre los jardines y las ventanas, parpadeando de tal modo que la gente denominó este fenómeno: “efecto discoteca”. Esto, unido al ruido, puede llevar a la gente hasta un alto nivel de estrés, con efectos de consideración para la salud. No obstante, la mejora del diseño de los aerogeneradores ha permitido ir reduciendo el ruido que producen.
La apertura de pistas y la presencia de operarios en los parques eólicos hace que la presencia humana sea constante en lugares hasta entonces poco transitados. Ello afecta también a la fauna.

jueves, 18 de febrero de 2010

NORMATIVA FORESTAL



DECRETO 1791
OCTUBRE 4 DE 1996 Por medio de la cual se establece el régimen de aprovechamiento forestal.


LEY 139
DE JUNIO 21 DE 199 Por la cual se crea el Certificado de Incentivo Forestal
y se dictan otras disposiciones.

DECRETO 1824
(Agosto 3 de 1994) Por el cual se reglamenta parcialmente la Ley 139 de 1994.
El Presidente de la República de Colombia en ejercicio de sus facultades constitucionales y legales y en especial de las contempladas en el numeral 11 del artículo 189 de la Constitución Política.

DECRETO 900
(Abril 1 de 1997) Por el cual se reglamenta el Certificado de Incentivo Forestal para Conservación.
El presidente de la República de Colombia en ejercicio de sus facultades constitucionales y legales, en especial de las que le confiere el numeral 11 del artículo 189 de la Constitución Política y en desarrollo de la Ley 139 de 1994 y del parágrafo del artículo 250 de la Ley 223 de 1995.

AIRE



Fuentes fijas y móviles

Proyecto de Normatividad de Fuentes Móviles. Relacionada con los niveles permisibles de emisión de contaminantes producidos por fuentes móviles terrestres a gasolina o diesel, y se definen los equipos y procedimientos de medición de las emisiones y se adoptan otras disposiciones.

Resolución No. 160 del 14 de junio de 1996 - Reglamentan los niveles permisibles de emisión de contaminantes producidos por las fuentes móviles con motor a gasolina y diesel.

Calidad del aire

Resolución 601del 4 de abril de 2006. Por la cual se establece la Norma de Calidad del Aire o Nivel de Inmisión, para todo el territorio nacional en condiciones de
Referencia.

Decreto 979 de 2006. Calidad Aire.

Decreto 043 de 2005. Por el cual se toman medidas para controlar las exportaciones de Sustancia Agotadoras de la Capa de Ozono.